Recently I was going through the solutions of this problem. I was very surprised to see the short solutions of many Chinese coders and found out that they use a cool trick for solving this kind of problems. But I could not find anything in English on this. So I had to learn everything using Google Translate :triumph: . This is is my attempt on sharing everything I have learned. Let’s begin! :smiley:

Notations

  • $\left[P\right] = 1$, if $P$ is true. Otherwise, $\left[P\right] = 0$.

  • $S_{k}(n) = \sum\limits_{i = 0}^{n} i^{k}$

Problem 1

Given $a, b, c, n$, compute $\sum\limits_{x = 0}^{n} \left\lfloor{\frac{ax + b}{c}}\right\rfloor$.

Solution

Let us denote $f(a, b, c, n) = \sum_\limits{x = 0}^{n} \left\lfloor{\frac{ax + b}{c}}\right\rfloor$.
Consider the case when $a \geq c$ or $ b \geq c$. Then we have,

\begin{aligned}f(a, b, c, n) =&{\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ ( \left\lfloor{\frac{a}{c}}\right\rfloor c + (a \bmod c) )x + \left\lfloor{\frac{b}{c}}\right\rfloor c + (b \bmod c)}{c}}\right\rfloor \cr =& {\sum\limits_{x = 0}^{n}} \left( \left\lfloor{\frac{a}{c}}\right\rfloor x + \left\lfloor{\frac{b}{c}}\right\rfloor + \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor \right) \cr =& \frac{n(n + 1)}{2} \left\lfloor{\frac{a}{c}}\right\rfloor + (n + 1) \left\lfloor{\frac{b}{c}}\right\rfloor + f(a \bmod c, b \bmod c, c, n)\end{aligned}

Now we just need to find $f(a, b, c, n)$ when $a < c$ and $b < c$.

We have, \begin{aligned}f(a, b, c, n) = {\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ax + b}{c}}\right\rfloor\end{aligned}

We can also write it like this,

\begin{aligned}f(a, b, c, n) =& {\sum\limits_{x = 0}^{n} \sum\limits_{y = 0}^{ \left\lfloor{\frac{ax + b}{c}}\right\rfloor - 1}} 1 \cr =& {\sum\limits_{y = 0}^{ \left\lfloor{\frac{an + b}{c}}\right\rfloor - 1} \sum\limits_{x = 0}^{n}}\left[y < \left\lfloor{\frac{ax + b}{c}}\right\rfloor \right]\end{aligned}

Now,

\begin{aligned} & y < \left\lfloor{\dfrac{ax + b}{c}}\right\rfloor \cr \implies & y + 1 \leq \dfrac{ax + b}{c} \cr \implies &cy + c - b \leq ax \cr \implies & cy + c - b - 1 < ax \cr \implies & \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor < x \end{aligned}

Let $m = \left\lfloor{\dfrac{an + b}{c}}\right\rfloor$,

\begin{aligned} f(a, b, c, n) =& {\sum\limits_{y = 0}^{m - 1} \sum\limits_{x = 0}^{n}}\left[x > \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor\right] \cr =& {\sum\limits_{y = 0}^{m - 1}} n - \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor \cr =& mn - {\sum\limits_{y = 0}^{m - 1}} \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor \cr =& mn - f(c, c - b - 1, a, m - 1)\end{aligned}

Thus we have obtained a recursive function for our problem. For any state where $a < c$ and $b < c$, $a$ and $c$ change their positions in the next state and the process repeats. Otherwise we make a and b smaller than c by taking the remainder. This process is similar to the Euclidean algorithm.

Complexity

$\mathcal{O}(log(a))$

Code

1
2
3
4
5
6
 long long FloorSumAP(long long a, long long b, long long c, long long n){
  if(!a) return (b / c) * (n + 1);
  if(a >= c or b >= c) return ( ( n * (n + 1) ) / 2) * (a / c) + (n + 1) * (b / c) + FloorSumAP(a % c, b % c, c, n);
  long long m = (a * n + b) / c;
  return m * n - FloorSumAP(c, c - b - 1, a, m - 1);
}



Problem 2

Given $a, b, c, n$, compute ${\sum\limits_{x = 0}^{n}} x \left\lfloor{\frac{ax + b}{c}}\right\rfloor$ and ${\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ax + b}{c}}\right\rfloor^{2}$.

Solution

Let $g(a, b, c, n) = {\sum\limits_{x = 0}^{n}} x \left\lfloor{\frac{ax + b}{c}}\right\rfloor$ and $h(a, b, c, n) = {\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ax + b}{c}}\right\rfloor^{2}$.
We will proceed similarly to our previous problem.

Deriving g

  • When $a \geq c$ or $b \geq c$,

    \begin{aligned}g(a, b, c, n) =& {\sum\limits_{x = 0}^{n}} x \left\lfloor{\frac{ ( \left\lfloor{\frac{a}{c}}\right\rfloor c + (a \bmod c) )x + \left\lfloor{\frac{b}{c}}\right\rfloor c + (b \bmod c)}{c}}\right\rfloor \cr =& {\sum\limits_{x = 0}^{n}} \left( \left\lfloor{\frac{a}{c}}\right\rfloor x^{2} + \left\lfloor{\frac{b}{c}}\right\rfloor x + x \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor \right) \cr =& \frac{n(n + 1)(2n + 1)}{6} \left\lfloor{\frac{a}{c}}\right\rfloor + \frac{n(n + 1)}{2}\left\lfloor{\frac{b}{c}}\right\rfloor + g(a \bmod c, b \bmod c, c, n)\end{aligned}

  • When $a < c$ and $b < c$,

    \begin{aligned} g(a, b, c, n) =& {\sum\limits_{x = 0}^{n} x\sum\limits_{y = 0}^{ \left\lfloor{\frac{ax + b}{c}}\right\rfloor - 1}} 1 \cr =& {\sum\limits_{y = 0}^{ \left\lfloor{\frac{an + b}{c}}\right\rfloor - 1} \sum\limits_{x = 0}^{n}}\left[y < \left\lfloor{\frac{ax + b}{c}}\right\rfloor \right]x \cr =& {\sum\limits_{y = 0}^{m - 1} \sum\limits_{x = 0}^{n}}\left[x > \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor\right]x \end{aligned}

    Let $z = \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor$,

    \begin{aligned}g(a, b, c, n) =& {\sum\limits_{y = 0}^{m - 1} \sum\limits_{x = 0}^{n}}\left[x > z\right]x \cr =& {\sum\limits_{y = 0}^{m - 1}} {(z + 1) + (z + 2) \ldots (z + (n - z))} \cr =& \frac{1}{2} {\sum\limits_{y = 0}^{m - 1}} {(n + z + 1)(n - z)} \cr =& \frac{1}{2} {\sum\limits_{y = 0}^{m - 1}} { n(n + 1) -z -z^{2}} \cr =& \frac{mn(n + 1)}{2} - \frac{1}{2} \left({\sum\limits_{y = 0}^{m - 1}} {z}\right) - \frac{1}{2} \left({\sum\limits_{y = 0}^{m - 1}} {z^{2}}\right)\cr =& \frac{mn(n + 1)}{2} - \frac{1}{2} \left({\sum\limits_{y = 0}^{m - 1}} { \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor}\right) - \frac{1}{2} \left({\sum\limits_{y = 0}^{m - 1}} { \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor^{2}}\right)\cr =& \frac{mn(n + 1)}{2} - \frac{1}{2} f(c, c - b - 1, a, m - 1) - \frac{1}{2} h(c, c - b - 1, a, m - 1)\end{aligned}

Deriving h

  • When $a \geq c$ or $b \geq c$,

    \begin{aligned}h(a, b, c, n) =& {\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ ( \left\lfloor{\frac{a}{c}}\right\rfloor c + (a \bmod c) )x + \left\lfloor{\frac{b}{c}}\right\rfloor c + (b \bmod c)}{c}}\right\rfloor^{2}\cr =& {\sum\limits_{x = 0}^{n}} \left( \left\lfloor{\frac{a}{c}}\right\rfloor x + \left\lfloor{\frac{b}{c}}\right\rfloor + \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor\right)^{2}\cr =& {\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{a}{c}}\right\rfloor^{2}x^{2} + \left\lfloor{\frac{b}{c}}\right\rfloor^{2} + \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor^{2} + 2 \left\lfloor{\frac{a}{c}}\right\rfloor \left\lfloor{\frac{b}{c}}\right\rfloor x \cr +& 2 \left\lfloor{\frac{b}{c}}\right\rfloor \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor + \left\lfloor{\frac{a}{c}}\right\rfloor x \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor \cr =& \frac{n(n + 1)(2n + 1)}{6} \left\lfloor{\frac{a}{c}}\right\rfloor ^{2} + (n + 1) \left\lfloor{\frac{b}{c}}\right\rfloor ^{2} + n(n + 1) \left\lfloor{\frac{a}{c}}\right\rfloor \left\lfloor{\frac{b}{c}}\right\rfloor + \left({\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor^{2}\right) \cr +& \left(2 \left\lfloor{\frac{b}{c}}\right\rfloor{\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor\right) + \left(2 \left\lfloor{\frac{a}{c}}\right\rfloor{\sum\limits_{x = 0}^{n}}x \left\lfloor{\frac{ (a \bmod c)x + (b \bmod c)}{c}}\right\rfloor\right) \cr =& \frac{n(n + 1)(2n + 1)}{6} \left\lfloor{\frac{a}{c}}\right\rfloor^{2} + (n + 1) \left\lfloor{\frac{b}{c}}\right\rfloor^{2} + n(n + 1) \left\lfloor{\frac{a}{c}}\right\rfloor \left\lfloor{\frac{b}{c}}\right\rfloor + h(a \bmod c, b \bmod c, c, n) \cr +& 2 \left\lfloor{\frac{b}{c}}\right\rfloor f(a \bmod c, b \bmod c, c, n) + 2 \left\lfloor{\frac{a}{c}}\right\rfloor g(a \bmod c, b \bmod c, c, n)\end{aligned}

  • When $a < c$ and $b < c$,
    Working with the square term is not easy. So, let’s break it down.

    \begin{aligned}n^2 = n(n + 1) - n = 2 \left(\sum\limits_{i = 0}^{n - 1} i + 1\right) - n\end{aligned}

    Using this we get,

    \begin{aligned} h(a, b, c, n) =& {\sum\limits_{x = 0}^{n}} \left\lfloor{\frac{ax + b}{c}}\right\rfloor^{2}\cr =& {\sum\limits_{x = 0}^{n}} \left(2{\left(\sum\limits_{y = 0}^{ \left\lfloor{\frac{ax + b}{c}}\right\rfloor - 1} y + 1\right)} - \left\lfloor{\frac{ax + b}{c}}\right\rfloor\right)\cr =& \left(2{\sum\limits_{x = 0}^{n}\sum\limits_{y = 0}^{m - 1}} (y + 1)\right) - f(a, b, c, n) \end{aligned}

    Now,

    \begin{aligned} {\sum\limits_{x = 0}^{n}\sum\limits_{y = 0}^{m - 1} y + 1} =& {\sum\limits_{y = 0}^{m - 1} (y + 1)\sum\limits_{x = 0}^{n}} \left[ x > z \right]\cr =&{\sum\limits_{y = 0}^{m - 1}} (y + 1) (n - z)\cr =&\left({\sum\limits_{y = 0}^{m - 1}}(y + 1)n\right) - \left({\sum\limits_{y = 0}^{m - 1}}yz\right) - \left({\sum\limits_{y = 0}^{m - 1}}z\right) \cr =& \left({\sum\limits_{y = 0}^{m - 1}}(y + 1)n\right) - \left({\sum\limits_{y = 0}^{m - 1}}y \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor \right) - \left({\sum\limits_{y = 0}^{m - 1}} \left\lfloor{\dfrac{cy + c -b - 1}{a}}\right\rfloor\right) \cr =& \frac{mn(m + 1)}{2} - g(c, c - b - 1, a, m - 1) - f(c, c - b - 1, a, m - 1)\end{aligned}

    Finally, \begin{aligned} h(a, b, c, n) = mn(m + 1) - 2g(c, c - b - 1, a, m - 1) - 2f(c, c - b - 1, a, m - 1) - f(a, b, c, n) \end{aligned}

Implementation

The functions $g$ and $h$ are dependent on each other. So if we naively write three recursive functions there will be too many function calls and the complexity will be huge. Notice that the calls to the next state of all the functions are similar. So, we can use structure instead. For every state we will calculate the three functions simultaneously, save them in a structure and return the structure. This way we don’t have to call the functions over and over again.

Complexity

$\mathcal{O}\left(3log(a)\right)$

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
struct dat {
  long long f, g, h;
  dat(long long f = 0, long long g = 0, long long h = 0) : f(f), g(g), h(h) {};
};

long long mul(long long a, long long b){
  return (a * b) % MOD;
}

dat query(long long a, long long b, long long c, long long n){
  if(!a) return {mul(n + 1, b / c), mul(mul(mul(b / c, n), n + 1), inv2), mul(mul(n + 1, b / c), b /c)};
  long long f, g, h; 
  dat nxt;
  if(a >= c or b >= c){
    nxt = query(a % c, b % c, c, n);
    f = (nxt.f + mul(mul(mul(n, n + 1), inv2), a / c) + mul(n + 1, b / c)) % MOD;
    g = (nxt.g + mul(a / c, mul(mul(n, n + 1), mul(2 * n + 1, inv6))) + mul(mul(b / c, mul(n, n + 1)), inv2)) % MOD;
    h = (nxt.h + 2 * mul(b / c, nxt.f) + 2 * mul(a / c, nxt.g) + mul(mul(a / c, a / c), mul(mul(n, n + 1), mul(2 * n + 1, inv6))) + mul(mul(b / c, b / c), n + 1) + mul(mul(a / c, b / c), mul(n, n + 1)) ) % MOD;   
    return {f, g, h};
  }
  long long m = (a * n + b ) / c;
  nxt = query(c, c - b - 1, a, m - 1);
  f = (mul(m, n) - nxt.f) % MOD;
  g = mul( mul(m, mul(n, n + 1)) - nxt.h - nxt.f, inv2);
  h = (mul(n, mul(m, m + 1)) - 2 * nxt.g - 2 * nxt.f - f) % MOD;
  return {f, g, h};
}



Problem 3

Given $a, b, c, n, {k_{1} }, k_{2}$, compute ${\sum\limits_{x = 0}^{n} } x^{ {k_{1} }} \left\lfloor{\frac{ax + b}{c} } \right\rfloor^{ {k_{2} }}$.

Solution

Let us denote $F({k_{1} }, k_{2}, a, b, c, n) = {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left\lfloor{\frac{ax + b}{c} } \right\rfloor^{k_{2} }$

  • When $a \geq c$,

    \begin{aligned}F({k_{1} }, k_{2}, a, b, c, n) =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left\lfloor{\frac{ax + b}{c} } \right\rfloor^{k_{2} } \cr =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left( \left\lfloor{\frac{a}{c} } \right\rfloor x + \left\lfloor{\frac{ (a \bmod c) x + b}{c} } \right\rfloor \right)^{k_{2} } \cr =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } {\sum\limits_{y = 0}^{k_{2} }} \binom{k_{2} }{y} \left( \left\lfloor{\frac{a}{c} } \right\rfloor x\right)^{y} \left\lfloor{\frac{ (a \bmod c) x + b}{c} } \right\rfloor^{ {k_{2} } - y} \cr =& {\sum\limits_{y = 0}^{k_{2} }} \binom{k_{2} }{y} \left\lfloor{\frac{a}{c} } \right\rfloor^{y} {\sum\limits_{x = 0}^{n} } x^{ {k_{1} } + y} \left\lfloor{\frac{ (a \bmod c) x + b}{c} } \right\rfloor^{ {k_{2} } - y} \cr =& {\sum\limits_{y = 0}^{k_{2} }} \binom{k_{2} }{y} \left\lfloor{\frac{a}{c} } \right\rfloor^{y} F({k_{1} } + y, k_{2} - y, a \bmod c, b, c, n) \end{aligned}

  • When $b \geq c$ and $a < c$,

    \begin{aligned} F({k_{1} }, k_{2}, a, b, c, n) =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left\lfloor{\frac{ax + b}{c} } \right\rfloor^{k_{2} } \cr =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left( \left\lfloor{\frac{b}{c} } \right\rfloor + \left\lfloor{\frac{ ax + (b \bmod c)}{c} } \right\rfloor\right)^{k_{2} } \cr =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } {\sum\limits_{y = 0}^{k_{2} }} \binom{k_{2} }{y} \left( \left\lfloor{\frac{b}{c} } \right\rfloor\right)^{y} \left\lfloor{\frac{ ax + (b \bmod c)}{c} } \right\rfloor^{ {k_{2} } - y} \cr =& {\sum\limits_{y = 0}^{k_{2} }} \binom{k_{2} }{y} \left\lfloor{\frac{b}{c} } \right\rfloor^{y} {\sum\limits_{x = 0}^{n} } x^{ {k_{1} }} \left\lfloor{\frac{ ax + (b \bmod c)}{c} } \right\rfloor^{ {k_{2} } - y} \cr =& {\sum\limits_{y = 0}^{k_{2} }} \binom{k_{2} }{y} \left\lfloor{\frac{b}{c} } \right\rfloor^{y} F({k_{1} }, k_{2} - y, a, b \bmod c, c, n)
    \end{aligned}

  • When $a < c$ and $b < c$,
    Notice that, we can write $x^n$ as,

    \begin{aligned}x^n = \sum\limits_{i = 0}^{x - 1} \left(i + 1\right)^n - i^n \end{aligned}

    Now,

    \begin{aligned} F({k_{1} }, k_{2}, a, b, c, n) =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left\lfloor{\frac{ax + b}{c} } \right\rfloor^{k_{2} } \cr =& {\sum\limits_{x = 0}^{n} } x^{k_{1} } {\sum\limits_{y = 0}^{m - 1} }\left[y < \left\lfloor{\frac{ax + b}{c} } \right\rfloor\right]\left(y + 1\right)^{k_{2} } - y^{k_{2} } \cr =& {\sum\limits_{y = 0}^{m - 1} }\left(\left(y + 1\right)^{k_{2} } - y^{k_{2} }\right) {\sum\limits_{x = 0}^{n} } x^{k_{1} } \left[x > z\right] \cr =& {\sum\limits_{y = 0}^{m - 1} }\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i} y^{i} \left({\sum\limits_{x = 0}^{n} } x^{k_{1} } - \sum\limits_{x = 0}^{z} x^{k_{1} }z\right) \cr =& {\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i}\sum\limits_{y = 0}^{m - 1} } y^{i} \left(S_{ {k_{1} }}(n) - S_{ {k_{1} }}(z)\right) \cr =& {\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i} }S_{i}(m - 1) S_{ {k_{1} }}(n) - {\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i}\sum\limits_{y = 0}^{m - 1} } y^{i} S_{ {k_{1} }}(z) \end{aligned}

    $S_{k}(n)$ is a $k + 1$th degree polynomial function of $n$, ie.

    \begin{aligned}S_{k}(n) = \sum\limits_{i = 0}^{n} i^{k} = \sum\limits_{i = 0}^{k + 1} d_{ {k} {i} } \times n^{i}\end{aligned}

    We can calculate this polynomial using Lagrange polynomial or Bernoulli numbers. So, we can easily calculate the first part of our equation. For the second part,

    \begin{aligned}{\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i}\sum\limits_{y = 0}^{m- 1} } y^{i} S_{ {k_{1} }}(z) =& {\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i}\sum\limits_{y = 0}^{m - 1} } y^{i} \sum\limits_{j = 0}^{ {k_{1} } + 1} d_{ {k_{1} }{j} } \times z^{j} \cr =& {\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i}\sum\limits_{j = 0}^{ {k_{1} } + 1} d_{ {k_{1} }{j} }\sum\limits_{y = 0}^{m - 1} } y^{i} \times \left\lfloor{\frac{cy + c - b - 1}{a} } \right\rfloor^{j} \cr =& {\sum\limits_{i = 0}^{k_{2} - 1}\binom{k_{2} }{i}\sum\limits_{j = 0}^{ {k_{1} } + 1} d_{ {k_{1} }{j} }} \times F(i, j, c, c - b - 1, a, m - 1)\end{aligned}

    We can solve this by precomputing $d_{ {k}{j} }$ for all possible $k$.

Implementation and Complexity

Like our previous problem, we will again use structure. For any state (a, b, c, n) we will calculate $F(k_{1}’, k_{2}’, a, b, c, n)$ for all possible $k_{1}’, k_{2}’$ such that, $k_{1}’ + k_{2}’ \leq k_{1} + k_{2}$. We will store these values in a structure. If we do this naively the complexity will be $\mathcal{O}( (k_{1} + k_{2})^{4} log(a) )$. However, notice that $\sum\limits_{j = 0}^{ {k_{1} } + 1} d_{ {k_{1} }{j} } \times F(i, j, c, c - b - 1, a, m - 1)$ doesn’t depend on $k_{2}$. So we can precalculate this for every $i$ and our complexity will be $\mathcal{O}( (k_{1} + k_{2})^{3} log(a) )$.

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
struct dat{
  ll F[11][11];
};

dat F(long long k1, long long k2, long long a, long long b, long long c, long long n){
  if(!a){
    dat ret;
    for(int _k1 = 0; _k1 <= k1 + k2; ++_k1){
      ret.F[_k1][0] = powerSum(n, _k1);
      for(int _k2 = 1; _k1 + _k2 <= k1 + k2; ++_k2){
        ret.F[_k1][_k2] = (ret.F[_k1][0] * bigMod(b / c, _k2)) % MOD;
      }
    }
    return ret;
  }

  dat ret;

  if(a >= c){
    dat nxt = F(k1, k2, a % c, b, c, n);
    for(int _k1 = 0; _k1 <= k1 + k2; ++_k1){
      ret.F[_k1][0] = powerSum(n, _k1);
      for(int _k2 = 1; _k1 + _k2 <= k1 + k2; ++_k2){
        ret.F[_k1][_k2] = 0;
        for(int y = 0; y <= _k2; ++y){
          ret.F[_k1][_k2] += ((ncr[_k2][y] * bigMod(a / c, y) ) % MOD) * nxt.F[_k1 + y][_k2 - y];
          ret.F[_k1][_k2] %= MOD;
        }
      }
    }
  }

  else if(b >= c){
    dat nxt = F(k1, k2, a, b % c, c, n);
    for(int _k1 = 0; _k1 <= k1 + k2; ++_k1){
      ret.F[_k1][0] = powerSum(n, _k1);
      for(int _k2 = 1; _k1 + _k2 <= k1 + k2; ++_k2){
        ret.F[_k1][_k2] = 0;
        for(int y = 0; y <= _k2; ++y){
          ret.F[_k1][_k2] += ((ncr[_k2][y] * bigMod(b / c, y) ) % MOD) * nxt.F[_k1][_k2 - y];
          ret.F[_k1][_k2] %= MOD;
        }
      }
    }
  }

  else {
    long long m = (a * n + b) / c;
    dat nxt = F(k1, k2, c, c - b - 1, a, m - 1);
    std::vector<long long> psumM(k1 + k2 + 1), pre(k1 + k2 + 1);
    for(int i = 0; i <= k1 + k2; ++i)psumM[i] = powerSum(m - 1, i);
    for(int _k1 = 0; _k1 <= k1 + k2; ++_k1){
      for(int i = 0; i <= k1 + k2; ++i){
        pre[i] = 0;
        for(int j = 0; j <= _k1 + 1; ++j){
          pre[i] += (d[_k1][j] * nxt.F[i][j]) % MOD;
          pre[i] %= MOD;
        }
      }
      ret.F[_k1][0] = powerSum(n, _k1);
      for(int _k2 = 1; _k1 + _k2 <= k1 + k2; ++_k2){
        ret.F[_k1][_k2] = 0;
        for(int i = 0; i < _k2; ++i){
          ret.F[_k1][_k2] += ( (ncr[_k2][i] * psumM[i]) % MOD) * ret.F[_k1][0];
          ret.F[_k1][_k2] -= ncr[_k2][i] * pre[i];
          ret.F[_k1][_k2] %= MOD;
        }
      }
    }
  }
  return ret;
}




Thanks for reading! :smiley: